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SUMMARY 

A finite element method for the simulation of viscoelastic flows has been developed. It uses a weak formulation 
of the method of characteristics to treat the viscoelastic constitutive law. Numerical results in a 4: 1 contraction 
are presented and are discussed with respect to previous computations. New phenomena are put in evidence 
and new questions are opened in this already controversial problem. 
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INTRODUCTION 

We shall describe in this paper a numerical method for the simulation of viscoelastic fluids. These 
fluids are a special case of non-Newtonian fluids that lie somewhere in between elastic materials 
and standard Newtonian fluids. 

This class, as all classes defined negatively, contains many different things. The general 
framework is continuum mechanics, from which we recall a few facts. We consider a flow in a 
domain R of R2 or R3; a flow is described first by the velocity field u(x), XER. We shall suppose in 
the following that we deal with an incompressible material of constant density so that 
conservation of mass reduces to the divergence-free condition 

div u = 0. (1) 
The second general law will be conservation of momentum, that becomes in the steady-state case 

equilibrium of forces. To write it, we need the stress tensor c. We then have 

p -+u.Vu - d i v o = p f ,  (: ) 
where p is the density of the fluid and f summarizes external forces. The operator V is the gradient 
operator. It is defined by 

aui (V u)ij = -. 
8x.j 

(3) 

In many cases we shall neglect in (2) the inertial terms u-V u to use the creeping-flow approximation 

aU 
at 

p- - div c = pf .  (4) 

Based on an invited lecture 

027 1-209 l/87/l01035-18$09.00 
0 1987 by John Wiley & Sons, Ltd. 



1036 M. FORTIN AND D. ESSELAOUI 

To complete this set of equations we need one more. This will be the constitutive law. This law is 
special to the material considered. In some cases it will even be restricted to a given material and a 
class of flows, because no general law is available to take into account all situations. Non- 
Newtonian flows will thus be characterized and differentiated by their constitutive law, which will 
be some relation between the stress tensor and other properties of the flow. The classical 
Newtonian law is simply 

gD = 2pD (u) , ( 5 )  

where cD = Q - [ tr (o)/n]I is the deviatoric of the stress tensor (T, n = 2 or 3 is the dimension of the 
space and D(u), the strain rate tensor, is the symmetric tensor 

D(u) =+[(VU) + (VU)~] .  (6) 
From this point many variations are possible. We shall describe briefly in the next section the 

case of generalized Newtonian fluids, where the viscosity p will be supposed to be dependent on 
D (u). 

Finally we shall consider a class of viscoelastic flows in which the stress tensor will depend on its 
own history; that is, a memory effect will be involved in the description of the material. 

We shall try to build a numerical method that will degenerate in the Newtonian case to a simple 
and proven method. Moreover, following a technique that was successful for generalized 
Newtonian flows, we shall try to restrict all computations related to constitutive laws to element 
level. Numerical results show that this technique yields interesting new facts. We apologize that it is 
of course not possible in a short paper to review the full literature on such a wide subject. We refer 
the reader to the comprehensive study of Crochet et al.’ for a more general presentation. 

GENERALIZED NEWTONIAN FLOWS 

We recall in this section a numerical method for the treatment of a large class of relatively simple 
fluids, which are often termed as generalized Newtonian fluids. The reader may refer to 
References 2 and 3 for further details. The fluids that we now consider are characterized by a 
viscosity depending on the second invariant of the strain rate tensor. Precisely, we suppose a 
constitutive law of the form, 

cD=2q(lD(u)J2)D(u).  (7) 
Generally q(.) is a scalar, but it would be possible to introduce a matrix in order to model 

anisotropic behaviours appearing in certain polymeric liquids. A widely used law of the form (7) is 
the simple power law, 

cD = 2 p I D ( ~ ) l ~ - ~ D ( u ) .  (8) 
In (7) and (8), lD(u)I = ( ~ D $ ( u ) ) ” ~  is the second invariant of the strain rate tensor. Supposing 

now q to be a scalar monotonic function of ID(u)J2 we introduce the functional, 

J(v)= 4(ID(v)J2)dx- s (9) 

where 4’(s) = q(s). Minimizing J ( v )  over a suitable divergence-free vector field (that depends on the 
particular function 4 considered), one obtains the solution of the non-linear creeping flow problem: 

divCq(ID(u)12)D(41 = f ,  (10) 

(1 1) div u = 0, 
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with boundary conditions associated with the choice of the functional space. 
We now briefly recall an algorithm that will permit a local (element-wise) treatment of the non- 

linearity. This will afterwards be used as a guideline for further developments to viscoelastic 
materials. The trick in the present case is to transform our minimization problem into a saddle- 
point problem by introducing an auxiliary variable q that should be equal, when the solution is 
found, to D(u). We thus write the augmented Layrangian problem: 

Inf sup In 4( I q 1’) dx - f - v  dx + h:(q - D(v)) dx 
q.v A 

+ i- a(x)(q - D(v))’ dx. 
2 *  

The solution of this is now characterized by the system 

a(x)D(u):D(v)dx- [ h + r ~ ( x ) P ] : D ( v ) d ~ =  f.vdx,Vv, (13) 

(14) 

(15) 
We recall that the space V should be a space of divergence-free functions. An algorithm to solve this 
system is described in Reference 3, and for this particular case in Reference 2. It implies solving in 
sequence the linear problem (1 3) for u, p and h being given and then the non-linear problem (14) in 
p,u and h being given, those steps being used in an updating mechanism for h. 

Problem (14) contains no derivatives of p. I t  can be solved pointwise. For a discretized problem 
this will mean at element level and even, if a proper choice of degrees of freedom is done, at a few 
Gaussian nodes on each element. Let us briefly describe the finite element discretization that was 
used. We used for the velocity and pressure components the now standard Q2-P1 approximation 
(Figure 1). We wanted our model to degenerate to a standard Newtonian model when viscosity 
was constant. This imposed that the approximations of I and p should contain D(v,,) for any 
discrete velocity field. This meant using at least an incomplete Q2 approximation for each 
component of the tensors. In order to be able to build an orthogonal basis that permitted us to 
reduce computations to pointwise ones we approximated h and p by complete Q2 elements with 
Gaussian points as nodes (Figure 2) .  

This approximation is discontinuous, which is consistant with the augmented Lagrangian 
formulation and its decomposition properties. 

I In I* 
{n[q(lD(u)12) + ra(x)p:qdx - [ra(x)D(u)- l] :qdx=O,Vq, 

I n  
P = D(u).  

u,v P 

nodal \ralue 

+ dm-ivat ivt-  111 t h i s  dirrrliori 

Figure 1. Velocity and pressure 
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Figure 2. Tensors A and p 

The success of this method led us to try to use analogue ideas for viscoelastic flows even if no such 
simple construction is obvious. We shall describe our solution method in the next section. 

VISCOELASTIC FLOWS 

We shall now try to build approximations for a more complex class of non-Newtonian flows, 
namely viscoelastic flows. We would like to do so in the same spirit as in the discretization of 
generalized Newtonian flows, that is: 

(a) our approximations should reduce to a standard approximation of the Navier-Stokes 
equations when applied to a Newtonian flow 

(b) treatment of the non-linearities introduced by constitutive equations should be kept at a 
local level. 

This goal will be met by using a method of characteristics to deal with memory effects. But let us 
first describe the models we would like to consider. 

Viscoelastic constitutive models 

The difference between viscoelastic models and those proposed in the last section lies mainly in 
the introduction into the constitutive laws of memory effects. We shall no longer relate the stress 
tensor to the strain-rate tensor through some more or less complicated function, but rather write an 
evolution equation for stress or some of its components. We cannot present here the developments 
that lead to the constitutive laws described below; we refer the reader References 2-6, among 
others, for a general presentation. Let us merely recall that a fundamental point in building a model 
is frame invariance: the behaviour of a fluid should not depend on the co-ordinate system in which 
we write its equations. This requisite leads us to introduce the notion of convective derivatives for a 
tensor .F: 

a r  
6t at 
5.F = ~ + U - V T  + [TS2(u)  - O(u).F] + O [ F  D(u) + D ( u ) F ] .  (16) 

For 8 = 0 we have the Jaumann derivative, which takes into account translation and rotation ofa 

For 8 = 1 and 6 = - 1 we obtain the covariant and contravariant derivatives, respectively, 
volume element of the flow. n ( u )  = ~ ( ( V U  - V U ) ~ )  is the vorticity tensor. 

a y  
6t at 
59- = __ + [U.V).F - [(V u).F + T ( V  u)'] . 

We now consider a special case of the eight-parameter Oldroyd model.4 Now 0 will be an extra- 
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stress and no longer a deviatoric. It is a solution of the equation 

6, 6 
Y(E,IJ)IJ + A,--o = 2q0[D(u) + A,-E.D(u)]. 

6t 6t  (19) 

The cases Y(E, IJ) = 1, A, = 0, A l  and qo constants correspond to the usual Maxwell models of type A 
or B (covariant or contravariant models). The case A, = 0 corresponds to the model of Phan Thien 
and Tanner.’ Taking A, # 0 generalizes the so-called three-parameter Oldroyd model. This model 
is now used to define the stress tensor LT of (2) by 

F= -ppI+IJ. (20) 
Following for instance Keunings and Crochet8,” we can simplify (19) to bring us back to the 
case I ,  = 0. Let us indeed set 

a=o,+o, ,  (21) 

IJ2 = %,D(u) 9 (22) 

where we have 

with q2 = q,(A,/A,) and qo = q 1  + q2.  In the case Y(E,IJ) = 1 it is readily verified that (19) reduces to 

For the non-linear case Y(E,IJ) = exp((EE.,/qO) tr 6) this can no longer be done. However there is 
no real reason to believe that the following final model is less’ valid than the above one. We 
summarize therefore our problem in the equations 

p - + u - V u  -divLT=pf,  (: ) 

I J ~  = 2q2D(u). (28) 

This model contains the standard covariant and contravariant models, the model of Phan Thien 
and Tanner and the three-parameter Oldroyd model. Ifq, and A, depend on ID(u)I it also contains 
the White-Metzner model.8 In order to obtain a numerical method for this model we shall first 
introduce a Lagrangian formulation of (27). 

Lagrangian form of the constitutive law 

Referring to definition (16) one sees that the model (24)-(28) is non-linear and that it must be 
solved as a system: it is not possible to obtain a closed form for c1 in order to eliminate this 
unknown. We shall however try to obtain a more suitable form for these equations by writing them 
in Lagrangian form. Let us first define for - 1 d 8 6 1 

me = n(u) + OD(u) = + [ ( I  + 8)Vu - ( 1  - O)VuT]. (29) 
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We can thus rewrite (16) in the form 

d o s  a 5  
d t  at 

- + u * V F  + F m o  + m i F .  

Let then X(x,t;s) be the position at time s of a particle located at  x at time t. We thus have 

We also define the following tensor-valued function that describes the history of the deformation 

F(x, t; s) = V,X(x, t; s) , 
F(x, t; t) = I .  

One then checks4 that F is the solution of the differential system 

aF 
-(x, t; S) = U(X, t)'V,F(x, t; S) - F(x, t; s)V,U(X, t) ,  
at 
F ( x , t ; t ) = I ,  

or, introducing the material derivative 

(33) 

DF d F  
Dt at 

- + u - V F ,  

It is then a simple exercise to check that we have 

DF-T 
= F-T(Vu)T, 1 

Dt 

J F-T(X,t ; t )=I ,  

where F - T  = (F-')T, as usual. 
Let us now consider a differential system containing both (34) and (35) as special cases. We define 
RJx, t ;  s) to be the solution of 

I R,(x, t; t )  = I .  

For 8 = - 1 and 8 = + 1 we get back (34) and (39, respectively. For 8 = 0 we have, setting R = R, 

(37) 
dR 
-(x, t; S )  = - R(x, t; S )  S ~ ( U ) ,  
at 

and we take into account only the rotation part of the deformation. Defining now, 

W,(X, t; S) = R,(x, t; S)G(X, t)Ri(x, t; s), (38) 
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it is then a matter of tedious calculations to obtain from (38) and (36) 

awe 6,a 
at 6t -(x, t; S) + U(X,  t)*VW,(X, t; S) = R,(x, t ;  s)-(x, t ) R i ( ~ ,  t; s). 

Using (39) our constitutive law (27) can be transformed as 

DW, L ~ - ( x , ~ ; s )  = 2v1R,(x, t;~)Du(x,t)R;(x, t ; s ) -  P(E, W,)W,(x,t;s), Dt 

(39) 

(40) 

where P(E, W,) = Y(c, (r) = Y(E, R; W,RiT). 

A numerical scheme for viscoelastic constitutiue laws 

Although the finite element that we propose will ultimately be founded on a weak formulation of 
the transport equation, we shall first consider, to fix ideas, a simple discretization of (36) and (40). 
Let us suppose for the moment that u(x, t )  is a given vector field; let also G be known at time t,, 
whereas we want to find its values at time t,+ = t ,  + At. 
We first approximate X ( x ,  t ,+  1, t,) by 

~ , = ~ - u ( ~ , t , + l ) A t ,  (41) 
that is we approximate the particle path by a straight line (Figure 3). We then apply along this path 
a simple Euler’s scheme to (36): 

which yields, as RJx, t, t) = I, 

R,(x*, t,, t,+ 1 )  = I - Atm;(x7 t,+ A .  
This enables us to compute 

(43) 

x*, (n 

Figure 3. 
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This then reduces to 

For Y(E, a) = constant, this is a linear equation for ~ ( x ,  t, + In the general case we have a 
non-linear relation that must be solved by some iterative method. 

Although this is the basic idea, it is not, as such, compatible with a finite element formulation. To 
fully present our numerical method for viscoelastic flows we shall therefore introduce a weak 
formulation of the transport equation. 

A WEAK FORMULATION FOR THE TRANSPORT EQUATION 

We briefly describe here a numerical method essentially due to Benque et al." Let us suppose that 
we want to solve a transport problem 

(47) 
aT 
- + u*VT= f ,  
at 

in a time-dependent domain Q c R" x (t l ,  tz), where u is a given divergence-free vector field and f a 
know external source. Let 4 be a smooth enough test function (we shall not try here to develop a 
proper functional setting). 

We multiply (47) by 4 and integrate over Q to obtain the equivalent form: 

jQ (:+ u-VT- f 4 d x d t  = 0 .  ) (48) 

Following Figure 4, we denote by R, the trace of Q at a fixed time t. In particular R,, and a,, are 
the initial and final configurations of 0,. We also denote by n, the normal to 30,. We define 
C = u, dR, = aQ\R,,\R,,. The normal to C makes an angle 8, with the t-axis and an angle 8, 
with the vector n,. We now integrate (48) by parts to obtain for any 4 

r r 

(n.n,T+ cos 8, + T 4  cos 0,)de = (49) 

In order to employ (49), we shall now make two special choices that will greatly simplify it: 

1. We take C parallel to the velocity field u (that is we follow the characteristics). This means, 

"t,, 

nt l  

Figure 4. 
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u.ncosO,+ cosd,=O, on C. 

2. We take 4 satisfying 

Equation (49) then reduces to 

[ Q l > T i d x -  loll T 4 d x =  [ p d x d i ,  v i .  (52)  

If one knows TI = T(,tl and f, (52) enables one to compute T2 = TInt2. This is nothing but a week 
form of the method of characteristics. It must be noted here that (51) implies that 4 is completely 
determined by its value on Q,,. 

We shall now consider a finite element simple implementation of (51) and (52). We consider on Q 
a finite element mesh F h  of triangles or quadrilaterals. We approximate T by the usual technique 
of the finite element method, that is for any K e Y h  we define an approximation T,,, such that 

TnlK= T~I'GK, (53) 

where ?,,epcPI(R) is a polynomial function on a reference element and l? and GK is the 
transformation that maps 

Supposing u to be known, we compute the domain generated by the characteristics emanating 
from K .  In practice this means computing the characteristics emanating at time t 2  from the 
geometric nodes of K .  (Figure 5). In general the image K , ,  at time t ,  of K will be a general 

onto K .  We require no continuity at interfaces. 

Figure 5. 
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isoparametric element, even if K is a straight-sided element. Moreover we consider a basis {wi} for 
6 and we use a set of test functions satisfying (51) and such that 

q5i(t) = wioGK(t). (54) 
Computing T2, when T ,  and f are known, is then a matter of solving a small linear system. It is 
even generally possible to choose wi in order that q 5 i l K t  forms an orthogonal basis for the L2(K) 
scalar product, so that the system (52) becomes diagonal This is indeed readily achieved by using 
Lagrange interpolation functions associated with a set of Gaussian nodes. On a quadrilateral, it is 
direct to define a biquadratic element by its value on the nine points of a standard product formula. 

Whenever this is done, integration in x at  a fixed t reduces to a simple sum. If we take in (52) q5 to 
be the test function associated with a quadrature node this sum reduces to one point, as q5 vanishes 
on other quadrature points. 

Moreover, we have chosen to approximate the time integral by a one-point rectangle formula: 

The approximation of (52) then breaks down into a very simple procedure, namely an implicit 
Euler’s scheme on every quadrature point xi: 

T2(xi)= Tl(X(xi9t2,tl) + (t2-tl).f(xi)), (56) 

Applying this procedure to (40) at every quadrature point xi in K and approximating X(xi, t 2 ,  t l )  
by the scheme (41), one obtains precisely Euler’s scheme (46). Applying it at every Gaussian node 
thus yields an approximation of the weak formulation. Furthermore, computing IS at Gaussian 
nodes is precisely what is needed in the finite element code to compute the integrals, such as 

r 
J IS: D(v)dx, (57) 

arising from the weak form of div 6. 

APPROXIMATION AND SUMMARY OF THE NUMERICAL PROCEDURE 

We now summarize the numerical technique coming out of the previous developments, when 
applied to a discretized version of (24)-(28). We shall use here the same finite element 
approximation of the velocity and pressure field as we used in the section on ‘Generalized 
Newtonian flows’, that is the now standard Q2 - P ,  biquadratic-velocity linear-pressure element. 
Again we require here that in the limiting Newtonian case one should obtain a standard 
approximation of the Navier-Stokes equations. This can again be obtained by using a 
discontinuous biquadratic element to approximate cl. From the previous section, one is led to use 
as degrees of freedom of this element the point values of the extra stress at nine Gaussian modes on 
each quadrilateral. 

The problem that we want to solve is a time-dependent problem, and we shall describe here how 
one time step can be computed. We thus suppose that quantities u and (rl are known at time t ,  and 
we denote these values by u” and IS:. (These are ofcourse discrete values.) We now want to compute 
new values at time t,, ,; to do so we have to solve a non-linear system and some kind of iterative 
procedure has to be used. At the present time this has been a simple fixed-point procedure, but 
more elaborate, and it is hoped more efficient, methods are under test. 

The time stepping needed to solve (24)-(28) was performed by a simple implicit Euler’s scheme. 
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From (24), (26) and (28) one then obtains 

P( U"+;t - u" -2q,divD(u"+')-divo;+'+ Vp"+ '=pf .  

Whenever el+ ' = 0, this is a classical discretization of the Navier-Stokes problem. In order to use 
(58) we now need some technique to extract cy+' out of the available data. To do so, we 
approximate (27) by the weak formulation of the previous section and the form (40) of the 
constitutive equation. We start from some initial guess for u"+' (e.g. u"+' = u") and we apply (41), 
(43), (44) and (46) at each Gaussian node of each element. The only difficulty is to evaluate el (x", t ,) 
at the point x,= x - u"" At. We used the following technique. 

The characteristics from the nine geometric nodes of the element are computed (cf. Figure 5) and 
we identify in which element they lie at time t , .  From this we obtain at time t ,  a full isoparametric 
element and we compute the values of o1 at its nodes by interpolating from the values on the fixed 
mesh. (This implies of course some numerical diffusion.) Whenever the node falls on a point where 
the approximation of 07 on the fixed mesh is not continuous, we use the upwind value. From this 
new isoparametric interpolation we can compute any value we need at the Gaussian nodes. 

We then obtain from (46), using a semi-implicit discretization for the eventual non-linear term 
Y(E,4oF, 

Substituting this expression into (58) yields 

A 
x div D(u"+ ' div W; + Vp"-' = pf. 

)-,I + Y(E-o;)At 

This means that we have essentially to solve a Navier-Stokes problem with a modified viscosity 
term and an additional term (div W:) on the right-hand side. This problem was solved by a 
standard Newton-Raphson method, embedded in a fixed-point algorithm: given u"+ one 
computes W;, from which u" " is recomputed, etc. The convergence of this fixed-point procedure 
can be modulated by the choice of the time-step. We found that a convenient number of iterations 
was 4 or 5. A larger number was often the sign that a rapid variation of the solution could not 
adequately followed by the time-stepping procedure. 

NUMERICAL RESULTS 

The method described in the previous sections being relatively new, it is not possible to present 
a complete set of results for all possible cases. We however believe that there is some evidence 
that we have been able to make visible a few phenomena that had escaped previous computations. 
The results presented here come from a simple Maxwell model, that is Y(E,  c) = 1, ,I2 = 0,8 = k 1.  
Even if the solution is not the same for the contravariant (0 = - 1 )  and the covariant (8 = + 1) 
models, the phenomena described below were observed in both cases, and we shall make no 
distinction unless the contrary is stated explicitly. 

We essentially computed results in two geometries, both of academic nature. The first one 
was a 'Poiseuille' flow, that is a developed flow between two parallel plates. As an exact solution 
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C 

Figure 6. 

Figure I .  

is known in this case this was a check that the code did not contain some tragic mistake. It was 
indeed possible to compute the exact solution upto an error in At coming from the Euler’s 
scheme used for the time-stepping procedure (the space discretization was rich enough not to 
introduce errors). The second one a 4: 1 contraction (Figure 6). This problem has become a kind 
of bench-mark, and comparison with previous computations permits evaluation of the per- 
formance of new ones. It is a difficult problem: the stresses are strongly singular near the corners 
A and B (see for instance Reference 11). This is likely to generate strange behaviour in this 
region because of the memory properties of a viscoelastic flow: the influence of the singularity 
will be extended downstream. The boundary conditions were a developed flow on C and a free 
exit at D. This problem is obviously symmetric with respect to the central axis of the contraction, 
and it is natural to compute on a half-domain by forcing the symmetry explicitly. As we shall 
see, this may hide some important phenomena and should be avoided. 

The main issue in this contraction problem is the so-called ‘high Weissemberg number problem’. 
The phenomenon is the following: there exists a critical value A* of A, beyond which no 
steady-state solution can be found. Continuation methods have shown this to correspond to a 
turning point12 (Figure 7) and not for instance to a Hopf bifurcation towards some periodic 
solution. This phenomenon corresponds to the half contraction symmetric geometry (or to an 
axisymmetric three-dimensional geometry). Our numerical method, being essentially time- 
dependent, could compute steady-state solutions only by the convergence of a time dependent 
process. Our results confirmed the above-described observations: we were unable to converge 
beyond some A,. Moreover, the time-dependent problem then exploded, showing that we had 
not bifurcated to some unsteady phenomenon. 

While analysing these results we were however led to believe that the non-convergence was 
developing around the axis of symmetry. To analyse this phenomenon more clearly and to avoid 
any possible mistake in taking into account symmetry we built a mesh for the complete 
contraction. 

The situation then changed radically: we were not able to obtain any steady-state solution for 
any Weissemberg number, however small. Instead we observed the appearance of a non-spatially- 
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symmetric periodic solution. This could of course not be computed by a steady-state method in 
a half domain. 

We no longer had a high Weissemberg number problem, but rather a small Weissemberg 
number problem: the solution was harder to converge inside each time step for small values of 
I , .  This paradoxical phenomenon can be understood when one realizes that the period of the 
solution is roughly O(, / I , ) .  Thus oscillations get shorter and shorter for small A, and a smaller 
time step is needed to represent them adequately. This is consistent with the singular limit 
character of the case I l  = 0: the memory phenomenon of the model implies a memory fading 
like e-z''l along streamlines. 

The question that now arises is whether this periodic oscillatory solution makes any sense. 
It is indeed a reasonable suspicion that it could be generated by the numerical method. 

Let us first get rid of a possible trouble, namely changes of type. It is k n ~ w n ' ~ , ' ~  that the 
equations of viscoelastic fluids can present changes of type, and that hyperbolic pockets can 
develop, analogous to supersonic pockets in transonic flows. However when one neglects inertial 
terms in (24), it can be proved that this change of type cannot occur. In this case it is very simple 
to see that an artificial change of type would occur if the determinant of (c - 21) were to become 
negative. This is easy to check, and we were able to verify that no change of type had occurred 
in our computations. 

On the other hand, the theoretical results of JosephI4 are consistent with our computations. 
There is in fact a damped wave equation underlying the viscoelastic model in the small 
perturbation case and it is surely possible to think that in the general case vorticity waves are 
generated by some non-linear mechanism. Moreover, symmetry breaking is a quite a common 
phenomenon in non-linear elasticity, and it is not a surprise to see symmetric date generate a 
non-symmetric behaviour. 

What kind of bifurcation diagram could explain or describe this phenomenon? It is easy to 
see that A = O  is not a Hopf bifurcation point in the standard sense of Figure 8. The Stokes 
problem is a symmetric problem with real eigenvalues. Therefore some other form should be 
sought. We conjecture that the diagram of Figure 9 could be used to describe our problem. A 
periodic branch appears from infinity at 2 = 0. This is compatible with the singular limit property 
of I = 0. A steady branch still exists for I >  0, at least for A < A*. It is probably unstable and is 

s t a b l e  unstable  s t e a d y  

s teady 

X=O 

Figure 8. 

Figure 9. 
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0.49-  

0.48- 

0.47- 

0.46- 

0.45- 

0.44- 

0.43- 

0.42- 

0 .41 -  

computed only by careful continuation or because it is made stable by numerical dissipation. 
Such a branch could even be a purely numerical artefact, if one takes into account the results 
of Keunings,12 who showed that the critical value of A gets smaller and smaller when fine meshes 
are used. 

Of course this is purely conjectural. We, however, believe that such an explanation is worth 
a verification and we are at present working on another numerical procedure that could possible 
cross-check what we presented here. 

Let us now come to the results themselves. Where do these oscillations take place? As we 
might expect it is near the neck of the contraction, where singularities are likely to produce 
strong effects. Figures 10 and 11 show Lissajou's diagrams (u2  vs. u l )  of the velocities at 

0.40075 - 
0.39100 - 

0.38125- 

* 
* 
* 
* 
* 

* 
* 

* * 

* 
* 

* 
* 

* * * 

2.87 2.89 2 .91  2.93 2.95 2.97 2.99 3.01 

Figure 10. 

0.42025 

0.41050 

* * 

2.49 2.54 2.59 2.64 2.69 

Figure 11. 
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point A of Figure 6, for A l  = 0 and 1, = 0.1, respectively, as a function of time. For A =  0 we 
have convergence and data accumulate to a limit point. For 1 = 0.1 the periodic behaviour is 
clearly visible and it corresponds to a pulsation in the velocity field that grows up to a local 
periodic flow for 1, large enough. (It must be noted that our numerical method guarantees mass 
conservation, so that the total flow in the neck is always accurate.) A further point in favour of 

Figure 12. 
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the significance of these numerical results is that such pulsations near the neck have been observed 
experimentally by researchers of the Institut de Mecanique de Grenoble. 

In Figure 12 we present a sequence of flow fields for A l  = 0.3 showing how the flow actually 
oscillates. 

Finally we show how the (rI2 component of the stress tensor is non-symmetric as Al grows. 
Figures 13 and 14 present u12 for A = 0 1  at two different time steps separated by approximatively 
one period of the periodic oscillation. One sees near the neck nearly anti-symmetric values. It must 
be said that this could never be detected by looking at streamlines, which are not perturbed in a 
visible way. 

Figure 13. 

Figure 14 
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Figure 15. 

Figure 15 shows o12 for ll = 0.3, where non-symmetry has grown rather strongly. 

CONCLUSION 

Numerical solution of viscoelastic materials is a hard problem. Our aim in the present study 
was to see if new numerical methods could produce significant results and circumvent difficulties 
such as the high Weissemberg number problem. We have at  least obtained results that suggest 
a new explanation for this phenomenon, and the numerical method developed has proved to 
be manageable. There remain many open questions and we intend to verify our conjecture 
through other numerical procedures and by further comparison with experimental results. 
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